Lensed event sampling (Analytical formulation)

Initial setup

Note: I will interchangeably use terms like observable events and detectable events.

Define all the parameters involved.

  • Source parameters: \(\theta \in \{\) \(m_1\) (mass of the heavier one), \(m_2\) (mass of the lighter one), \(\iota\) (inclination-angle), \(\phi\) (phase-of-coalescence), \(\psi\) (polarization-angle), \(ra\) (right-ascension), \(dec\) (declination) \(\}\) and \(z_s\) : red-shift of the source.

  • Lens parameters: \(\theta_L \in \{\) \(\sigma\) (velocity-dispersion), \(q\) (axis-ratio), \(\psi\) (axis-rotation), \(\gamma\) (spectral-index), \([\gamma_1,\gamma_2]\) (external-shear), \([e_1,e_2]\) (ellipticity), \(\beta\) (source position) \(\}\)

  • \(z_L\) : red-shift of the galaxy lens

  • image param: \(\{\) \(\mu_i\) (magnification), \(dt_i\) (time-delay), \(n_i\) (morse-phase) \(\}\). There is subscript \(i\) because there can be multiple images.

Given \(d N^L_{obs}(z_s)\) is the number of lensed GW detectable events from sources at red-shift \(z_s\) in a spherical shell of thickness \(d z_s\), then, let rate of lensing (number of lensed events happening per unit time) is given by,

\begin{equation} \begin{split} \mathcal{R}_L &= \int_{z_{min}}^{z_{max}} \frac{d N^L_{obs}(z_s)}{d \tau} \\ &= \int_{z_{min}}^{z_{max}} \frac{d N^L_{obs}(z_s)}{d \tau\;dV_c} \frac{dV_c}{dz_s} dz_s \end{split} \tag{1} \end{equation}

\(\frac{d N^L_{obs}(z_s)}{d \tau \;dV_c}\) is the observed merger rate density at source-frame, and \(\frac{dV_c}{dz_s}\) is the differential co-moving volume at red-shift \(z_s\). After taking care of time-dilation, the expression looks,

\begin{equation} \begin{split} \mathcal{R}_L &= \int_{z_{min}}^{z_{max}} \frac{d N^L_{obs}(z_s)}{d t\;dV_c} \frac{1}{1+z_s} \frac{dV_c}{dz_s} dz_s \\ &= \int_{z_{min}}^{z_{max}} R^L_{obs}(z_s) dz_s \end{split} \tag{2} \end{equation}

Observed merger rate density of lensed GW events at source red-shift \(z_s\) (detector-frame) is given by \(R^L_{obs}(z_s) = \frac{d N^L_{obs}(z_s)}{d t\;dV_c}\). And, let \(R(z_s)\) be the rate of the merger of unlensed events (source frame) at \(z_s\), regardless of whether it is detectable or not.

\begin{equation} \begin{split} \mathcal{R}_L &= \int_{z_{min}}^{z_{max}} R^L_{obs}(z_s) dz_s \\ &= \int_{z_{min}}^{z_{max}} R(z_s) P(obs,SL|z_s) dz_s \end{split} \tag{3} \end{equation}

\(P(obs,SL|z_s)\) is the probability of observing a strong lensing event at red-shift \(z_s\).

Optical depth

Strong lensing probability (where does it come from?)

\begin{equation} \begin{split} \mathcal{R}_L &= \int_{z_{min}}^{z_{max}} R(z_s) P(obs|z_s, SL) P(SL|z_s) dz_s \end{split} \tag{4} \end{equation}

Probability of observing an event given that it is located at redshift \(z_s\) and it’s strongly lensed: \(P(obs|z_s, SL)\). Strong lensing probability with source at redshift \(z_s\) (optical depth): \(P(SL|z_s)\). Now, using Bayes’ theorem,

\begin{equation} \begin{split} P(SL|z_s) &= \frac{P(z_s|SL) P(SL)}{P(z_s)} \\ P(z_s) P(SL|z_s) &= P(z_s|SL) P(SL) \\ \frac{R(z_s)}{N_1} P(SL|z_s) &= P(z_s|SL) P(SL) \\ P(SL|z_s) &= P(z_s|SL) P(SL) \frac{N_1}{R(z_s)} \end{split} \tag{5} \end{equation}

Normalizing factor: \(N_1 = \int_{z_{min}}^{z_{max}} R(z_s) dz_s\).

Taking care of normalization

Similarly, when lensing condition applied, let \(N_2 = \int_{z_{min}}^{z_{max}} R(z_s) P(SL|z_s) dz_s\).

\begin{equation} \begin{split} P(SL) &= \int_{z_{min}}^{z_{max}} P(SL|z_s) P(z_s) dz_s \\ &= \int_{z_{min}}^{z_{max}} P(SL|z_s) \frac{R(z_s)}{N_1} dz_s \\ &= \frac{N_2}{N_1} \end{split} \tag{6} \end{equation}

Now putting together, equation 5 becomes,

\begin{equation} \begin{split} \frac{R(z_s)}{N_1} P(SL|z_s) &= P(z_s|SL) \frac{N_2}{N_1} \\ R(z_s) P(SL|z_s) &= N_2 P(z_s|SL) \end{split} \tag{7} \end{equation}

Optical depth in rate equation

Replace the above result in the integrand of Equation 4. This also takes care of the normalizing factor. Note that \(P(z_s|SL)\) is a normalized pdf of source red-shifts, \(z_s\), conditioned on strong lensing.

\begin{equation} \begin{split} \mathcal{R}_L &= N_2 \int_{z_{min}}^{z_{max}} P(z_s|SL) P(obs|z_s, SL) dz_s \\ & \text{consider } \int \rightarrow \int_{zl}\int_{\beta}\int_{\theta}\int_{\theta_L} \\ \mathcal{R}_L &= N_2 \int P(z_s|SL) P(obs|\theta, \theta_L, \beta, z_s, SL) \\ & \;\; P(\beta|\theta_L, z_s, SL) P(\theta_L|z_s, SL) P(\theta) d\beta d\theta d\theta_L dz_s \end{split} \tag{8} \end{equation}

For \(P(z_s|SL)= \frac{R(z_s)}{N_2} P(SL|z_s)\), from equation 7, I have considered ‘optical depth’ (\(\tau(z_s) = P(SL|z_s)\)) is a function of \(z_s\) only. Otherwise, we need to consider the cross-section (\(P(SL|z_s, \theta_L)\)) which will not be discussed here. Below shows how to get \(P(SL|z_s)\), i.e., the probability of strong lensing of source at \(z_s\). \(dN(z_l)\) is the number of galaxy lenses at red-shift \(z_l\) (in \(d z_l\)).

General formulation of optical depth expression

\begin{equation} \begin{split} P(SL|z_s) &= \int^{z_s}_0 \frac{P(SL|\theta_L, z_s)}{4\pi} dN(z_l) \\ P(SL|z_s) &= \int \frac{P(SL|z_s, z_l, \sigma, q)}{4\pi} \frac{dN(z_l)}{dz_l d\sigma dq} dz_l d\sigma dq \\ P(SL|z_s) &= \int \frac{P(SL|z_s, z_l, \sigma, q)}{4\pi} \frac{dN(z_l)}{dV_c d\sigma dq} \frac{dV_c}{dz_l} dz_l d\sigma dq \\ & \text{writing the cross-section $P(SL|z_s, z_l, \sigma, q)$ as $\phi$} \\ P(SL|z_s) &= \int \frac{\phi}{4\pi} \frac{dN(z_l)}{dV_c d\sigma dq} \frac{dV_c}{dz_l} dz_l d\sigma dq \\ \end{split} \tag{9} \end{equation}

Optical depth for SIS lens

Consider the SIS case of Haris et al. 2018. Take \(\phi\) as \(\phi_{SIS}\).

\begin{equation} \begin{split} P(SL|z_s) &= \int \frac{\phi_{SIS}}{4\pi} \frac{dN(z_l)}{dV_c d\sigma} \frac{dV_c}{dz_l} dz_l d\sigma \\ P(SL|z_s) &= \int \frac{\pi \theta_E^2}{4\pi} \big< n \big>_{\sigma\in P(\sigma)} P(\sigma) \frac{dV_c}{dz_l} dz_l d\sigma \end{split} \tag{10} \end{equation}

The cross-section of the SIS lens is \(\pi \theta_E^2\), where \(\theta_E\) is the Einstein radius. Haris has considered the number density of the lens, \(<n>_{\sigma\in P(\sigma)}\) and the PDF of velocity dispersion, \(P(\sigma)\) is independent of \(z_l\). Take \(<n>_{\sigma\in P(\sigma)}=n_o=8\times 10^{-3} h^3 Mpc^{-3}\).

\begin{equation} \begin{split} P(SL|z_s) &= \int \frac{\theta_E^2}{4} n_o P(\sigma) \frac{dV_c}{dz_l} dz_l d\sigma \\ P(SL|z_s) &= \int_0^{z_s} \Phi_{SIS}(z_l) dz_l \\ & \text{where, $\Phi_{SIS}(z_l)= \int \frac{\theta_E^2}{4} n_o P(\sigma) \frac{dV_c}{dz_l}d\sigma$ }. \\ & \;\; \Phi_{SIS}(z_l)= \left< \frac{\theta_E^2}{4} n_o \frac{dV_c}{dz_l}\right>_{\sigma\in P(\sigma)} \\ & \text{Note: $\theta_E$ and $\frac{dV_c}{dz_l}$ are functions of $z_l$.} \end{split} \tag{11} \end{equation}

Optical depth for SIE lens

Consider the SIE case with \(\sigma\) distribution dependent on \(z_l\). The expression for optical depth reads,

\begin{equation} \begin{split} P(SL|z_s) &= \int \frac{\phi_{SIE}}{4\pi} \frac{dN(z_l)}{dV_c d\sigma dq} \frac{dV_c}{dz_l} dz_l d\sigma dq \\ P(SL|z_s) &= \int \frac{\phi_{SIS}}{4\pi} \frac{\phi^{SIE}_{CUT}(q)}{\pi} \big< n \big>_{\sigma, q\in P(\sigma, q)} P(q|\sigma, z_l) P(\sigma|z_l) \frac{dV_c}{dz_l} dz_l d\sigma dq \\ P(SL|z_s) &= \int \frac{\phi_{SIS}}{4\pi} \frac{\phi^{SIE}_{CUT}(q)}{\pi} n_o P(q|\sigma, z_l) P(\sigma|z_l) \frac{dV_c}{dz_l} dz_l d\sigma dq \\ & \;\;\;\;\; \text{$\frac{\phi^{SIE}_{CUT}(q)}{\pi}$ will be found through interpolation.} \end{split} \tag{12a} \end{equation}

\begin{equation} \begin{split} P(SL|z_s) &= \int_0^{z_s} \Phi_{SIE}(z_l) dz_l \\ & \text{where, $\Phi_{SIE}(z_l)= \int \frac{\phi_{SIS}}{4\pi} \frac{\phi^{SIE}_{CUT}(q)}{\pi} n_o P(q|\sigma, z_l) P(\sigma|z_l) \frac{dV_c}{dz_l} d\sigma dq$ }. \\ & \;\; \Phi_{SIE}(z_l)= \left< \frac{\phi_{SIS}}{4\pi} \frac{\phi^{SIE}_{CUT}(q)}{\pi} n_o \frac{dV_c}{dz_l} \right>_{q\in P(q|\sigma,z_l), \sigma\in P(\sigma|z_l)} \\ & \text{If $\sigma$ is independent of $z_l$, then} \\ & \;\; \Phi_{SIE}(z_l)= \left< \frac{\phi_{SIS}}{4\pi} \frac{\phi^{SIE}_{CUT}(q)}{\pi} n_o \frac{dV_c}{dz_l} \right>_{q\in P(q|\sigma), \sigma\in P(\sigma)} \end{split} \tag{12b} \end{equation}

\(\phi^{SIE}_{CUT}(q)\) is derive from the expression given in Fei Xu et al. 2022.

Rate equation (statistical formulation)

The final equation of the observed rate of lensed events is shown below. Note that, \(z_s\) is sampled from its prior distribution and then rejection sampled with respect to optical depth.

\begin{equation} \begin{split} \mathcal{R}_L &= N_2 \bigg< P(obs|\theta, \theta_L, \beta, z_s, SL) \bigg>_{z_s\in P(z_s|SL), \theta\in P(\theta), \theta_L\in P(\theta_L|z_s, SL), \beta\in P(\beta|\theta_L, z_s, SL)} \end{split} \tag{13} \end{equation}

\(P(obs|\theta, \theta_L, \beta, z_s, SL)\) checks whether the event is detectable or not.

Where the sampling priors can be further simplified as follows,

\begin{equation} \begin{split} P(z_s|SL) &= P(SL|z_s)\,P(z_s) \\ P(\theta_L|z_s, SL) &= P(SL|z_s, \theta_L)\, P(\theta_L|z_s) \\ P(\beta|z_s, \theta_L, SL) &= P(SL|z_s, \theta_L, \beta)\, P(\beta|z_s, \theta_L) \end{split} \tag{15} \end{equation}

This allows \(z_s\) to be sampled from the astrophysical prior, \(P(z_s)\), and then later rejection sample with respect to optical depth, \(P(SL|z_s)\). The same is the case for \(\theta_L\) (\(z_l,\sigma,q\)). The strong lensing condition is applied through rejection sampling with respect to \(\phi^{SIE}_{CUT}(q)\) (\(\propto \theta_E^2\,\phi^{SIE}_{CUT}\)). For the source position, \(\beta\), it is sampled within the caustic and then checked whether it has 2 or more images or not.

The order of sampling and rate calculation steps in LeR are listed below.

  1. Sample \(z_s\) from \(\frac{R(z_s)}{N_1}\). And apply rejection sampling with optical depth, \(P(SL|z_s)\). Other source parameters are sampled separately, \(P(\theta)\).

  2. \(z_l\) from \(P(z_l|z_s)\).

  3. \(\sigma\) together from \(P(\sigma|z_l, SL)\).

  4. \(q\) from \(P(q|\sigma)\).

  5. Calculation of Einstein radius and apply lensing condition to the sampled lens parameters, \(P(SL|z_s, z_l, \sigma, q) \propto \theta_E^2\,\phi^{SIE}_{CUT}\).

  6. Other lens parameters (\(e_1\), \(e_2\), \(\gamma_1\), \(\gamma_2\), \(\gamma\)) are sampled independent of the SL condition, \(P(e_1,e_2,\gamma_1,\gamma_2,\gamma)\). But, this will be rejection sampled later along with the image position.

  7. Draw image position, \(\beta\), from within the caustic boundary and solve the lens equation. Accept it if it results in 2 or more images, otherwise resample \(\beta\).

  8. Sometimes (once in 100-200 thousand), the strong lensing condition cannot be satisfied. For these particular events, resample lens parameters and draw image positions, i.e. repeat steps 2-7.

  9. Calculate the magnification, \(\mu_i\), time-delay, \(dt_i\) and morse phase, \(n_i\) for each of the lensed event.

  10. Modify the luminosity distance, \(D_l\) to \(D_l^{eff}=D_l/\sqrt{|\mu_i|}\), and geocent_time to \(t_{eff}=t_{geocent}+dt_i\).

  11. Calculate SNR with gwsnr

  12. Apply the SNR threshold and check whether the event is detectable or not.

  13. Calculate rate of lensed events, \(\mathcal{R}_L\) using equation 13.